
Faster than NERFs – 3D Models from 2D Images1

Aniket Rajnish2

Indian Institute of Technology, Gandhinagar, India3

http://makra.wtf4

aniket.r@iitgn.ac.in5

Progyan Das6

Indian Institute of Technology, Gandhinagar, India7

http://progyan.me8

progyan.das@iitgn.ac.in9

Abstract10

Slow inference and training times have always been an issue with Neural Radiance Fields, and11

voxel representations, often used in these papers, lead to prohibitively large memory requirements12

and very long waiting times. While the accuracy of NERFs are very high, we may be willing to13

sacrifice representation accuracy in the favour of time. We note that game-development, in particular,14

suffers from a large latency from ideation to the actual creation of assets for deployment.15

In addition, although faster implementations of NERFs, like Instant-NGP [4] and Plenoxels [7]16

have been famously published in the past year, we wanted to devise an end-to-end tool for going17

from an image to a quickly deployable 3D model with the least number of steps. Traditional ML18

techniques use voxel, mesh, or point-cloud based rendering techniques – these are volumetric, and19

often are bound by high time complexities (voxel-based rendering, for example, runs at O(N3)20

where N is the number of voxels, or 3-dimensional pixels, we are rendering). Instead, we use Signed21

Distance Functions, a (somewhat) more complicated but overall less algorithmically complex solution22

for rendering, that sacrifices some benefits of volumetric rendering for speed.23

To make this possible, we wrote our own raymarching rendering engine on C# and HLSL (short24

for High-Level Shader Language, a C-like language for use in Direct3D applications[3]), implemented25

it in Unity, and combined it with a Convolutional Neural Network trained on a custom data-set26

made on Blender. Our functioning assumption is that most complex shapes that we may want to27

approximate may be built with a set of 35 primitive shapes and an accompanying boolean expression28

combining a few operations (union, intersection, subtraction). This is the foundational principle of29

Constructive Solid Geometry[8], and we have found that it works with great effect in our project.30

Our end-product, SDFNet, is a tool built by game-developers, for game-developers, that takes a31

simple 2D image, and generates a 3D, surface-rendered model that is immediately deployable for32

development.33

34

1 Implementing the State of the Art35

Before we started writing our own rendering engine, we wanted to see how Neural Radiance36

Fields are implemented in python. To that end, we implemented a truncated version of the37

classical NERF paper from Nvidia Research, based on pytorch3D documentation[1].38

1.1 Neural Radiance Fields (NERFs) through raymarching39

The input is a number of images of the target, from different angles and their corresponding40

cameras, and our network attempts to build a scalar field that allows us to generate views41

from any other angle. To fit the radiance field, we render it from the viewpoints of the target42

cameras, and we compare the results with the observed target images and target silhouettes.43

CS 399|499, IIT Gandhinagar

https://orcid.org/0000-0002-1825-0097
http://makra.wtf
mailto:aniket.r@iitgn.ac.in
https://orcid.org/0000-0002-1825-0097
http://progyan.me
mailto:progyan.das@iitgn.ac.in
https://www.dagstuhl.de/lipics/

:2 Faster than NERFs – 3D Models from 2D Images

Figure 1 Side-by-side: the drop in the huber loss, and our trained model.

Loss is calculated as the mean huber loss (related to smooth-L1 loss) between rendered44

colours and the sampled target images, predicted masks and sampled target silhouettes.45

We use two losses –46

1. The color loss – as it is traditionally used in NERFs, the color loss essentially compares47

a snapshot of the model from the same camera position and angle with the data-point,48

which in this case is our corresponding image.49

50
ray_color = sampled_images (51

target_images [batch_idx],52

sampled_rays .xys53

)54

color_error = jnp.mean(55

jnp.abs(56

huber_loss (57

rendered_images ,58

colors_at_rays ,59

)))6061

2. The silhouette loss – the silhouette loss forces the model to absorb the rays where necessary,62

and not pass through it, and vice-versa. This is possible because our dataset comes with63

segmentation-masks – otherwise, we could have used an architecture like Mask-RCNN for64

image segmentation and obtained a good approximate for the same.65

66
silhouettes_at_rays =67

sampled_images (68

target_silhouettes [batch_idx , None],69

sampled_rays .xys70

)71

sillhouette_err = jnp.mean(72

jnp.abs(73

huber(74

rendered_silhouettes ,75

silhouettes_at_rays ,76

))7778

1.2 Drawbacks of NERFs79

As we can see, current state-of-the-art techniques produce very accurate results. However,80

as the paper mentions, they are slow, and often prone to taking hours to train. While it is81

A. Rajnish and P. Das :3

possible to do away with neural networks and use classical machine learning for a speedup82

[7], we wanted to minimize the time-consuming process of training a radiance field altogether,83

and therefore, we decided to shift to neural networks only for detecting shapes and structures84

in our images, and not for reconstructing our models from the images.85

2 Signed Distance Functions and Surface Rendering86

Computationally, geometry is often stored explicitly as a list of points, triangles, or other87

geometric fragments [5]; however, these methods are computationally expensive, and we88

can devise both parametric and non-parametric methods for expressing these geometries89

implicitly. Signed Distance Functions, therefore, are a method for parametric implicit surface90

representation. [6]91

These signed distance functions, or SDFs for short, are defined as continuous functions92

that, when passed the coordinates of a point in space, will return the shortest distance93

between that point and some arbitrary surface corresponding to that specific function. The94

sign of the return value indicates whether the point is inside that surface or outside (hence95

signed distance function).96

For example, for a sphere centered at the origin, the standard SDF is mentioned below.
[6]

f(p) = p⃗ − r⃗

2.1 Rendering Shapes97

We wrote an Image Effect shader to render objects directly in the screen space instead of98

creating instances of individual objects. We wrote a raymarching loop in the shader to render99

these shapes using their individual signed distance functions. All the parameters were taken100

from our model in a CSV file and were communicated to the shader from a C# script using101

Compute Buffers. The dimensional parameters were stored in a custom class of Vector12102

with 12 fields (maximum dimensional inputs that any shape can take) for floats, as the103

Shader language doesn’t support dynamic arrays. So these parameters were communicated104

in the following way:105

106
dimensions [0] = new vector12 (cyl.r, cyl.h, 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0);107

dimensions [1] = new vector12 (cap.r1 , cap.r2 , cap.h, 0, 0, 0, 0,108

0, 0, 0, 0 ,0);109110

Computer buffers were also used to communicate other information like the number of shapes111

to be rendered and the blend factor for the operations for each shape. All the shapes are112

rendered on render texture in front of the camera, the dimensions of which are communicated113

to the shader.114

2.2 Building a custom-editor in Unity115

A custom editor was developed in Unity to aid the need to fine-tune the objects rendered on116

the screen The editor could be accessed using the Unity’s inspector. The following parameters117

were governed using the Custom Editor –118

Shape Operation Color Blend Factor Dimension Factor119

:4 Faster than NERFs – 3D Models from 2D Images

Similarly, following spatial parameters were governed by the Unity’s inspector component120

–121

Shape position Shape Orientation (Quarternion/Euler Angles)122

3 Predicting Shapes – designing the Pipeline.123

We used a CNN architecture similar to Alex Net and built on top of that. The input to124

the model was an image of the object, in our example case, the bottle with a constructive125

geometry made of primary shapes. A total of 17 metadata entries, along with every image,126

were stored to reconstruct the model. These entries correspond to the presence, shape, and127

color of the sub-parts of the bottles. These were the output of the model.128

3.1 Architecture and Parameters of Neural Network.129

The architecture of the model consisted of CNNs, Pooling layers, activation functions such as130

ReLU, and dense linear layers towards the end. Finally, we received the 17 labels as output131

from the model, and these were read by the renderer. The output is received from the model132

in a csv sheet which includes –133

Parameter Data-type Description

Shape Index int Describes which out of a predefined list of primitives the
given shape is.

Shape Position Vector3 Describes the position of the shape in 3D space

Shape Rotation Vector3 Describes the orientation of the shape in 3D space
RGB Values Vector3 Denotes the RGB values of the color of the shape in the

form of a 3-dimensional vector.
Shape Dimensions Vector12 As a 12-dimensional vector, describes important absolute

and relative dimensions for attributes like radius, height, et
cetera, for the object. This is a sparse vector, and depending
on the shape, many or none of the components may remain
0.

134

3.2 Creating our dataset in Blender135

We used Blender to prepare the dataset of bottles of different shapes, sizes, and colours.136

Random gaussians were used to generate the dimensions of the bottles. The dimensions137

of the bottles along with the information of color were normalized before being fed to the138

model in the subsequent steps. The images and the information regarding the dimensions of139

the bottles were saved. Each bottle comprised two cylinders and one frustum. A total of140

17 metadata entries, along with every image, were stored to reconstruct the model. These141

entries correspond to the presence, shape, and color of the sub-parts of the bottles. In the142

end, 400 distinct data points were generated and used.143

3.3 In more detail: Parameters in use.144

The shape-index is an int used to determine the shape we’re trying to render. For instance,145

2 denotes a cylinder, and 5 denotes a Frustrum. The Shape Position basically represents146

the represents predicted center of mass of the segmented shapes. The coordinates of which147

are scaled values of the coordinates of the pixel. Thus, these dimensions are not absolute148

A. Rajnish and P. Das :5

Figure 2 A sample datapoint from the data-set, and the corresponding photograph.

but rather relative. The Shape Rotation values are the quaternion of the segmented shapes,149

again, it is calculated relative to the vertical axis. The RGB values are the average RGB150

values of each pixel on the segmented shapes. The Shape Dimensions are the individual151

dimensions required to define a particular shape. Take, for instance, a cylinder needs radius152

and height, a sphere just needs a radius, and a frustum/capped cone needs height, top, and153

bottom radius. Again, these are scaled values of the pixels covered.154

3.4 Justification: Why Unity?155

The Unity Engine was primarily used for the following reasons –156

1. To aid in rendering the shadows using Unity’s Directional Light Object. It takes its157

quaternion in Euler form (Vector3) into account.158

2. To map the 2D image onto the screen space using Camera Frustrum (Matrix 4 × 4) and159

Camera to World Matrix (Matrix 4 × 4).160

We wrote a custom Raymarcher class in C# to provide the following data manually –161

Parameter Data-type Description

Shape Count int The length of the rows of the csv sheet, i.e, the number
of shapes to be rendered on-screen.
We later refactored this to be part of the output file.

Operation Index int An integer value used to denote which operation (union,
intersection, subtraction) to perform with each shape.

Blend Factor float, 0 ≤ x ≤ 1 Whether or not to smoothen out the edges of different
shapes, and finely blend them with each other.

162

Ideally, the model should have predicted these data-points as well, but we couldn’t train it163

to do so at the moment and would be working on it further. We have found architectures like164

CSG-Net, that infer boolean expressions for Constructive Solid Geometry from 3D Models,165

that have piqued our interest, and we look forward to using them in our work.166

:6 Faster than NERFs – 3D Models from 2D Images

Figure 3 Left to right: How the blend factor increases from 0.36, to 0.59, to 0.93

3.5 Compute Buffer Conversion – C# to HLSL167

All this data is passed to an HLSL-based shader to be rendered. This communication between168

the shader and C is done using a Compute Buffer of stride (size) 96 bytes.169

Parameter C# HLSL (Compute Buffer Conver-
sion)

Shape Index int int

Shape Position Vector3 float3

Shape Rotation Vector3 float3

RGB Values Vector3 float3

Light Direction Vector3 float3

Camera Frustrum Matrix 4 × 4 uniform float 4×4
Camera to World Matrix Matrix 4 × 4 uniform float 4 × 4

Shape Count int int

Operation Index int int

Blend factor float float

170

Apart from this the Image Effect shader used additional parameters –171

1. Main Texture (sampler2D)172

2. Camera Depth Texture (sampler2D)173

3. Shapes (Structured Buffer)174

The Main Texture and Camera Depth Texture is used to render multiple objects in the175

screen space without needing to create an instance for each. These are Image Effect shaders,176

that work like a post-processing effect over the screen-space, as opposed to vertex-shaders177

that work in world-space, which makes them more efficient and light for rendering crowded178

scenes. Please note that the entire SDF renderer is written in HLSL.179

4 Putting it all together with raymarching.180

We use raymarching for rendering – here, all attributes of the scene are implicitly defined in181

terms of some signed distance function. To find the intersection between the view ray and182

the scene, we start at the camera, and move a point along the view ray. At each step, we183

check if the SDF evaluates to a negative number at that point. If it does, we consider this a184

collision and initialize a surface at the point. [6][2]185

This data is then used by the raymarching loop to decide the distance functions and186

operations for each shape and the parameters that these functions would use to render every187

A. Rajnish and P. Das :7

Figure 4 A flowchart of the entire pipeline for going from 2D image to 3D model

shape as perceived from the 2D image. The predicted model is surface-rendered and, as188

anticipated, comes with some flaws, which can later be fine-tuned using the custom editor189

that we wrote to reconstruct a fairly accurate model.190

Figure 5 Side-by-side: reconstructed, SDF-rendered model, and the input image

5 Scope for improvement.191

The pertinent areas of improvement for our tool have been listed below. These are areas of192

rapid development, and we foresee them being implemented very soon.193

:8 Faster than NERFs – 3D Models from 2D Images

1. Expanding for radially asymmetric geometries.194

Since our tool only takes into account one image, we understand that for asymmetric195

geometries, there shall exist attributes that are occluded in any one camera angle. In196

addition, even for radially symmetric geometries, our model requires an angle that properly197

exposes all primitives present in the shape.198

2. Expanding for complex foregrounds and crowded backgrounds.199

The model often fails for images with complex foreground geometries or crowded back-200

grounds. We wish to forego that limitation with a combination of foreground-background201

image segmentation, and some flavour of the CSG-Net model, to break images down to202

corresponding boolean expressions for constructive solid geometry.203

3. Raising number of primitives.204

While we believe the 30 primitives that have been integrated into the Raymarching engine205

should be enough to express most geometries out there, there might be some esoteric,206

complex shapes that our model may not be able to approximate. We hope to soon get207

from 30 primitives to a planned 47 primitives.208

4. Predict Blend factor and Operations.209

At the moment, our model does not predict the boolean operations and the blend factor.210

We wish that both can be implemented soon.211

5. Increase dataset variety.212

Our model was only trained on a dataset consisting of frustrums and cylinders, out of213

the 30 primitives available. We wish to increase that variety with a much wider number214

of primitives.215

6 Conclusion and acknowledgements216

We have been able to produce a functioning prototype that can take a simple 2D image of a217

radially symmetric geometry and reconstruct a 3D representation through signed distance218

functions, with a combination of constructive solid geometry and neural networks. There is219

huge scope for improvement, and we are excited to keep working on this project, and also220

branch out into other domains.221

We are thankful to Prof. Shanmuganathan Raman, for his guidance across the duration222

of the project. We are also grateful to his student, Ashish Tiwari, for his timely help in223

understanding hard concepts whenever we required it, and we are indebted to Shruhrid224

Banthia, a third-year undergraduate student at IIT Gandhinagar, who helped us build a225

significant portion of the tool.226

References227

1 Pytorch3d · a library for deep learning with 3d data. URL: https://pytorch3d.org/228

tutorials/fit_simple_neural_radiance_field.229

2 Ray marching and signed distance functions. URL: https://jamie-wong.com/2016/07/15/230

ray-marching-signed-distance-functions/.231

https://pytorch3d.org/tutorials/fit_simple_neural_radiance_field
https://pytorch3d.org/tutorials/fit_simple_neural_radiance_field
https://pytorch3d.org/tutorials/fit_simple_neural_radiance_field
https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/

A. Rajnish and P. Das :9

3 Yong He, Kayvon Fatahalian, and Tim Foley. Slang: Language mechanisms for extensible real-232

time shading systems. ACM Trans. Graph., 37(4), jul 2018. doi:10.1145/3197517.3201380.233

4 Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics234

primitives with a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15,235

July 2022. doi:10.1145/3528223.3530127.236

5 Jeong Joon Park, Peter Florence, Julian Straub, Richard A. Newcombe, and Steven Lovegrove.237

Deepsdf: Learning continuous signed distance functions for shape representation. CoRR,238

abs/1901.05103, 2019. URL: http://arxiv.org/abs/1901.05103, arXiv:1901.05103.239

6 Inigo Quilez. Signed distance functions. URL: https://iquilezles.org/articles/240

distfunctions/.241

7 Sara Fridovich-Keil and Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and242

Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. In CVPR, 2022.243

8 Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet:244

Neural shape parser for constructive solid geometry. CoRR, abs/1712.08290, 2017. URL:245

http://arxiv.org/abs/1712.08290, arXiv:1712.08290.246

https://doi.org/10.1145/3197517.3201380
https://doi.org/10.1145/3528223.3530127
http://arxiv.org/abs/1901.05103
http://arxiv.org/abs/1901.05103
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions/
http://arxiv.org/abs/1712.08290
http://arxiv.org/abs/1712.08290

Utilizing SDFNet to generate a comprehensive 3D
shapes dataset and its Application
Aniket Rajnish
Indian Institute of Technology, Gandhinagar, India
https://www.linkedin.com/in/makra2077/
aniket.r@iitgn.ac.in

Progyan Das
Indian Institute of Technology, Gandhinagar, India
https://www.linkedin.com/in/progyan20/
progyan.das@iitgn.ac.in

Shruhrid Banthia
Indian Institute of Technology, Gandhinagar, India
https://www.linkedin.com/in/shruhrid-banthia-b9aa01203/
shruhrid.banthia@iitgn.ac.in

Abstract
In this work, a comprehensive dataset of shapes generated using SDFNet, a proprietary rendering
tool, is presented. The shapes in the dataset are created by manipulating primitive shapes using
Boolean operations such as union, intersection, and subtraction. The dataset is intended to be used
for Constructive Solid Geometry (CSG) algorithms and Disentangled Representation Learning. The
dataset will be released along with a tool for generating personalized datasets. Furthermore, the
work includes the use of FactorVAEKim and Mnih [2018], a popular disentanglement framework, to
test the effectiveness of the generated dataset in training disentangled representations. The results
of this study demonstrate that the dataset is capable of training FactorVAE to learn disentangled
representations of the shapes in the dataset. We demonstrate the effectiveness of our approach
by extracting 3D information from 2D images by traversing the latent space of FactorVAE. The
proposed dataset and tool have the potential to disrupt the current leading VAE-based disentanglement
frameworks.

1 Introduction

This work presents a comprehensive dataset of low-poly 3D shapes generated using SDFNet,
a proprietary rendering tool. The shapes in the dataset are created by manipulating primitive
shapes using Boolean operations such as union, intersection, and subtraction. The dataset is
intended to be used for Constructive Solid Geometry (CSG) algorithms and Disentangled
Representation Learning. The dataset will be released along with a tool for generating
personalized datasets.

The motivation behind this work is the need for a large publicly available dataset for
low-poly 3D shapes and the challenge of generating accurate 3D models from 2D images.
SDFNet was initially developed to create low-poly 3D models from a single 2D image.
However, the tool required extensive shape-specific training, struggled to handle images with
multiple shapes, and faced the challenge of the unavailability of a vast publicly available
dataset for 3D shapes.

The availability of a diverse and large-scale 3D shape dataset plays a crucial role in
extracting 3D information from 2D images. The proposed dataset with various primitive

CS 399|499, IIT Gandhinagar

https://orcid.org/0000-0002-1825-0097
https://www.linkedin.com/in/makra2077/
mailto:aniket.r@iitgn.ac.in
https://orcid.org/0000-0002-1825-0097
https://www.linkedin.com/in/progyan20/
mailto:progyan.das@iitgn.ac.in
https://orcid.org/0000-0002-1825-0097
https://www.linkedin.com/in/shruhrid-banthia-b9aa01203/
mailto:shruhrid.banthia@iitgn.ac.in
https://www.dagstuhl.de/lipics/

:2 Utilizing SDFNet to generate a comprehensive 3D shapes dataset and its Application

shapes, their dimensions, orientations, and color information can be useful in training VAEs
to extract 3D information from 2D images. Recent works have shown that VAEs can be
used effectively to disentangle and learn the underlying structure of 3D objects in their
latent space. However, the complexity of generative factors can hinder the ability of VAEs
to disentangle the learned latent factors.

The dataset is evaluated using FactorVAEKim and Mnih [2018], a popular disentangle-
ment framework, to test the effectiveness of the generated dataset in training disentangled
representations. The results demonstrate that the dataset is capable of training FactorVAE
to learn disentangled representations of the shapes in the dataset. The proposed dataset and
tool have the potential to disrupt the current leading VAE-based disentanglement frameworks.

2 Motivation

2.1 Constructive Solid Geometry
We had been developing a framework, SDFNet that aimed to create 3D low poly models
from a single 2D image. Low-poly 3D shapes are simplified versions of high-poly 3D shapes,
typically used in video games, virtual reality, and augmented reality applications. To make

Figure 1 The Model architecture of SDFNet

the reconstruction of the models possible, we wrote our own raymarching rendering engine on
C# and HLSL (short for High-Level Shader Language, a C-like language for use in Direct3D
applicationsHe et al. [2018]), implemented it in Unity, and combined it with a Convolutional
Neural Network trained on a shape specific dataset made on Blender. However, during the
implementation phase, we discovered some serious flaws that hindered its effectiveness.

Firstly, the tool required extensive shape-specific training to accurately create the 3D
model from a 2D image. This meant that we needed to train the model separately for
each shape, which was a time-consuming process.

A. Rajnish, P. Das and S. Banthia :3

Secondly, the tool could not render multiple shapes effectively. While it could generate
3D models from a single 2D image, it struggled to handle images with multiple shapes,
resulting in inaccurate or incomplete reconstruction.
Finally, and most importantly we faced the challenge of the unavailability of a vast
publicly available dataset for 3D shapes. While there are many available 3D shape
datasets, such as ShapeNetAngel X. Chang, ModelNetZ. Wu and Xiao, FAUSTBogo et al.
[2014], etc, there is a lack of publicly available datasets specifically focused on low-poly
3D shapes. The only dataset that aligns to our need was the 3DShapesBurgess and Kim
[2018] dataset by Deepmind. This dataset was procedurally generated from 6 ground
truth-independent latent factors, floor colour, wall colour, object colour, scale, shape and
orientation. The dataset does not cover multiple shapes per image. Also, only 4 primitive
shapes are covered in the dataset.

The availability of a large dataset of low-poly 3D shapes would be beneficial in several ways.
It would allow for training models that can generate low-poly 3D shapes using techniques
such as Constructive Solid Geometry. Such models could be used in various applications,
including video game development and architectural design.

2.2 Disentangled Representation Learning
As stated in the pioneering paper with the same title Wang et al. [2022], DRL "aims to
learn a model capable of identifying and disentangling the underlying factors hidden in the
observable data in representation form." Factor disentanglement is a field within machine
learning that focuses on separating the underlying independent factors that contribute to
generating complex data, such as images or 3D shapes. A definition of The goal is to identify
and isolate these factors, such as shape, texture, color, orientation, and operation (in the
case of CSG based data) so that they can be manipulated independently. It hypothesizes
that the input data has been crafted using inherently independent factors of variation.

The availability of a diverse and large-scale 3D shape dataset plays a crucial role in
extracting 3D information from 2D images. As pointed out in Neural 3D Mesh Renderer
Kato et al. [2018], learning 3D representations from 2D images requires large-scale datasets
with a wide range of 3D structures. The proposed dataset with various primitive shapes,
their dimensions, orientations, and color information, as mentioned later, can be useful in
training VAEs to extract 3D information from 2D images.

Recent works have shown that VAEs can be used effectively to disentangle and learn
the underlying structure of 3D objects in their latent space. However, the complexity of
generative factors can hinder the ability of VAEs to disentangle the learned latent factors.
The generative factors of 3D shapes are highly complex, and as a result, current disentangled
VAEs may not fully capture the underlying factors of variation in the data unless provided
with sufficient large and complex data for their training.

By providing a diverse and large-scale dataset with known ground truth information
about the shapes, dimensions, orientations, and colors, the proposed dataset can help improve
the ability of VAEs to disentangle the learned latent factors and extract 3D information from
2D images.

3 Dataset Description

3.1 Composition
The individual parameters that govern each shape are–

:4 Utilizing SDFNet to generate a comprehensive 3D shapes dataset and its Application

Shape Index (int)
Operation Index (int)
Dimension Parameter (vector12)
Position (Vector3)
Orientation (Vector3)
Color (HSV)

The Shape Index helps to identify the shape that has been used. It ranges from 0 to
30 while excluding the indexes for the fourteen shapes that are not considered for the
datasets.
The Operation Index helps to identify the operation associated with each shape. It
ranges from (0,2).
The Dimension Parameters help us to control the scale of the object. Given the
datasets are generated using our propitiatory rendering engine, we can control individual
dimensional parameters of objects like rounding factor, apex angle, thickness, etc., unlike
just the X, Y, Z scale of the object, giving us more control over the shape’s appearance.
The Position of the shape can be any random position in a cube of dimension 2 units
centered at the origin. The distance function of each shape is written such that its
centroid lies on the position specified.
The Orientation of the shape is randomly assigned to the shape using Random.rotation.
The Color of the shape is given a random HSV value with hue between (0,1) and
saturation and value fixed at 1.
The dataset is completely randomized with each image in the dataset containing multiple
shapes having varied parameters mentioned above.

Figure 2 A glimpse of the Final Dataset.

A. Rajnish, P. Das and S. Banthia :5

Figure 3 Sample image with operations: Cone (Union) + Sphere (Union) + Box Frame
(Subtraction)

3.2 Preparation
We utilized Unity and the C# and HLSL programming languages to develop a custom
raymarching engine for real-time rendering of complex shapes and scenes, in the form of
an SDF Renderer. Raymarching is a technique for rendering three-dimensional scenes by
tracing rays from the camera through the scene and computing the intersections with objects
in the scene. Our engine used a distance function, defined in HLSL, to compute the distance
from each ray to the nearest object in the scene, and a raymarching algorithm, implemented
in C, to trace the ray through the scene and compute the final color of the pixel.

One of the key advantages of using Unity for this task was its built-in support for real-time
rendering and shading. We were able to leverage Unity’s powerful graphics pipeline and
shader system to implement our raymarching engine. Additionally, Unity’s flexible and
customizable interface allowed us to easily experiment with different rendering techniques
and optimizations.

The use of C and HLSL also provided several advantages for developing the raymarching
engine. C is a modern, high-level programming language with a rich set of libraries and
features, making it easy to implement complex algorithms and data structures. HLSL is a
specialized programming language for defining shaders and rendering effects, with a syntax
similar to C++. Together, these languages allowed us to create an efficient and scalable
raymarching engine that could render complex scenes in real-time.

The renderer supports over thirty primitives, three operations (Union, Intersection, and
Subtraction), and RGB color values (along with shadows).
The source code for the renderer can be found at https://github.com/aniketrajnish/
CS499-SDFNet/tree/main/Renderer.
The engine uses signed-distance functions (SDFs) to render individual shapes using the
shape index, dimension data, and RGB values. Further, it knits them into the screen
space using their relative position and dimensions.
The tool is built on top of this Raymarching Engine and is deployed as an executable
(.exe) file. It takes as input the following parameters-–

Varying Camera Angle
Varying Orientation
Varying Position
Randomize Shape Count
Max Shape Count
Dataset Size
Dataset Path
Resolution
Shapes

https://github.com/aniketrajnish/CS499-SDFNet/tree/main/Renderer
https://github.com/aniketrajnish/CS499-SDFNet/tree/main/Renderer

:6 Utilizing SDFNet to generate a comprehensive 3D shapes dataset and its Application

Operations
Seed

The Max Shape Count int refers to the maximum number of shapes that each image
in the Dataset should have.
The Randomize Shape Count bool, if true, randomizes the number of shapes in each
image between (0, n), where n is the “Max Shape Count”. Else every image is generated
with n number of shapes.
The Varying Camera Angle bool assigns a different angle to the camera for each image
of the dataset if true. Else the camera is just made to look at the object keeping it in the
center using transform.LookAt().
The Variying Orientation bool assigns a unique random orientation (angle) to the
individual shapes constituting the dataset if true. Else the shapes are simply aligned
with the axis using Quaternion.identity.
The Varying Position bool assigns a unique random position to the individual shapes –
in a cube of dimension 2 units centered at the origin – if true. Else the shapes are simply
centered at the origin.
The Dateset Size int refers to the number of images to be generated in the dataset.
The Dataset Path string is used to determine the path where the dataset folder is to be
created.
Resolution takes the width and height of the images (in pixels) as input and generates
them accordingly.
Shapes and Operations are enums that determine which shape index and operation
index are to be taken into consideration while generating each shape.
The Seed int is used to input a seed value to generate a dataset that has already been
created before by assigning the seed value to the Random State.

3.3 Processing And Labeling

Column Name Info
filename Name of the image file

shape Shape Index
operation Operation Index

a,b,c,d,e,f,g,h,i,j,k,l dimensional parameters
hue, sat, val HSV Values of the color

rot_x, rot_y, rot_z Euler Angles
pos_x, pos_y, pos_z Position Vector

Table 1 The label information of the dataset

These parameters are exported in the CSV sheet with all the image information as shown
in Figure 2
The CSV sheet has the labeled columns as shown in Table1
Each row depicts information about a shape in the image of a dataset.
The seed value of each random state is also exported in a txt file and can be used to
re-generate a dataset.

A. Rajnish, P. Das and S. Banthia :7

4 Experimentation

4.1 Brief outlook into Representation Learning and Disentanglement

4.1.1 Representation Learning
Representation learning has become a critical area of research in machine learning, particularly
in the era of big data. The primary objective of representation learning is to learn a
compact and informative representation of high-dimensional data that can be used for
various downstream tasks such as classification, clustering, and retrieval. In recent years,
representation learning has made significant progress, and its impact has been felt across
different areas, including computer vision, natural language processing, speech recognition,
and robotics.

4.1.2 Disentanglement
Disentanglement is a fundamental task in machine learning that involves separating the
underlying factors of variation in high-dimensional data. The goal of disentanglement is to
learn a set of independent and interpretable factors that capture the essential characteristics
of the data. This task is particularly useful in situations where it is desirable to manipulate or
control certain aspects of the data while preserving others. For example, in image generation,
disentangled representations can be used to control specific attributes such as the shape,
pose, and lighting of the generated image.

4.1.3 FactorVAE for disentanglement
FactorVAE is a state-of-the-art unsupervised learning technique for disentanglement that
was introduced in 2018 by Kim et al. in their paper "Disentangling by Factorizing". The key
idea behind FactorVAE is to encourage the learned representation to be invariant to certain
latent factors of variation in the data, while still allowing the representation to capture the
remaining factors of variation. This is achieved through a regularization term that encourages
the learned representation to be minimally sensitive to small changes in the input data that
are due to the disentangled factors of variation.

In particular, FactorVAE uses a variational autoencoder (VAE) to learn a probabilistic
mapping from the input data to a low-dimensional latent representation. The VAE is
regularized using an additional term called the total correlation penalty, which encourages
the learned representation to be factorized by explicitly minimizing the dependence between
the dimensions of the latent representation. This helps to ensure that each dimension of the
representation captures a separate and meaningful factor of variation in the data.

Let x be the input data, and let z be the low-dimensional latent representation. The
goal of FactorVAE is to learn a mapping from x to z that captures the underlying factors of
variation in the data.

The mapping is parameterized by an encoder function q(z|x) and a decoder function
p(x|z), which are learned through optimization of the following objective function:

L = Eq(z|x)[log p(x|z)] − βDKL(q(z|x)||p(z))

where β is a hyperparameter that controls the strength of the regularization, and
DKL(q(z|x)||p(z)) is the Kullback-Leibler (KL) divergence between the distribution of the
latent representation under the encoder q(z|x) and a prior distribution p(z).

:8 Utilizing SDFNet to generate a comprehensive 3D shapes dataset and its Application

To encourage disentanglement of the learned representation, FactorVAE adds an additional
penalty term to the objective function:

LTC = Ep(z) [log q(z|x)] − Eq(z|x) [log q(z)] ,

where q(z) is the marginal distribution of the latent representation under the encoder
q(z|x).

The final objective function used in FactorVAE is the sum of the reconstruction loss and
the regularization term:

Lfinal = L + λLTC,

where λ is a hyperparameter that controls the strength of the total correlation penalty.
By minimizing the objective function Lfinal, FactorVAE learns a disentangled represent-

ation that separates the underlying factors of variation in the data into independent and
interpretable dimensions.

4.2 Iterations of Experiments to improve the dataset

Figure 4 The reconstruction before and after the modification in the dataset

The inital dataset specifications were:
100000 Images
2 Shapes in each image (total of 6 shapes)
3 Operations in each image

The dataset had a large proportion of dark images. This resulted in the loss of information
on color in the latent space of FactorVAEKim and Mnih [2018]. From our findings, we
restricted the hue of the shapes that were being generated. To fix this issue we constrained
the camera and directional light to face the shape’s combined forward transform.

Camera .main. transform . LookAt (this. transform);
directional_light . transform . LookAt (this. transform);

The initial version of the dataset covered 6 solid shapes. We incorporated more shapes
such as the torus, that prevented the model from converging and essentially generalizing
to a solid blob for every image in the latent space. The reconstruction before and after
the modifications can be seen in Figure??.
The final dataset specifications are:

100000 Images
4 shapes in each Image(17 shapes)
3 possible operations

A. Rajnish, P. Das and S. Banthia :9

4.3 Representation Learning and 3D feature extraction
Modified Implementation of FactorVAE During the training of Factor-VAE, the
permutation-invariant loss function is used to measure the independence between the factors.
The approach enforces the independence between the factors by adding a Total Correlation
(TC) penalty to the loss function. The TC penalty encourages the latent factors to be
independent, making the optimization problem more difficult. For calculating the TC penalty.
Factor-VAE randomly permutes the latent variables in each batch to give us Z’ from the
latent variable Z. A discriminator is then trained to distinguish z from Z’ and contribute
to the TC loss. TC loss component is calculated by computing the KL divergence between
the aggregated posterior distribution over the latent (Z’) and the product of the individual
posterior distributions(Z). What we have modified to how we calculate the Z’ vector. Instead
of permuting along all the dimensions of z, even if we permute over just one dimension, we
can allow for the reconstruction of Z’. We hypothesize that this allows the Discriminator to
more accurately distinguishes Z from Z’ while training.

Latent Traversal and Extraction of 3D Information

Figure 5 Variation in the independent factors through the latent space

Figure 6 Gradual traversal across the latent space, z varies from -2.0 to +2.0

Once trained, we can traverse the latent space of FactorVAE to get variations across
various factors of the shapes. This allows us to generate new shapes with variations in
their features such as orientation, rotation, and displacement. Moreover, the disentangled
representations learned by FactorVAE allow us to extract 3D information from the 2D image
that was provided in the input. For instance, we show that by manipulating the latent factors,
we are able to extract 3D features of the given shape from 2D images. This was possible
because of the complexity of the dataset, comprising of various and varied shapes along with

:10 Utilizing SDFNet to generate a comprehensive 3D shapes dataset and its Application

taking into account the constructive operations, intersection, union, and subtraction involved
while preparing it.

The Figure5 shows the latent traversal through the latent space of the modified Factor
VAE. The size of the latent space is (10*1), of which each entry corresponsd to the sampled
input from the distribution presented by the encoder after refactoring. The figures show
the generated image from the decoder for the given sample with the specified value for a
particular factor. It can be observed that on explicitly varing the z value for a particular
factor, lets say, orientation we can observe gradual changes in the shape’s orientation. The
fact that z is being sampled from a continuous distribution ensures that the changes are
smoothened out, i.e gradual. This can be seen for a cylinder from Figure6.

This has applications in various domains, including virtual reality, gaming, and robotics.
This has the potential to revolutionize the field of computer vision and provide new insights
into the nature of generative factors in images.

5 Tool Release and Distribution

Figure 7 The Windows build of our tool.

We developed an SDF Renderer in the Unity Game Engine.
The renderer supports over thirty primitives, three operations (Union, Intersection, and
Subtraction), and RGB color values (along with shadows).
The source code for the renderer can be found at https://github.com/aniketrajnish/
CS499-SDFNet/tree/main/Renderer.
The engine uses signed-distance functions (SDFs) to render individual shapes using the
shape index, dimension data, and RGB values. Further, it knits them into the screen
space using their relative position and dimensions. We wrote an Image Effect shader
to render objects directly in the screen space instead of creating instances of individual
objects.

https://github.com/aniketrajnish/CS499-SDFNet/tree/main/Renderer
https://github.com/aniketrajnish/CS499-SDFNet/tree/main/Renderer

A. Rajnish, P. Das and S. Banthia :11

We wrote a raymarching loop in the shader to render these shapes using their individual
signed distance functions.
The dimensional parameters were stored in a custom class of Vector12 with 12 fields
(maximum dimensional inputs that any shape can take) for floats, as the Shader language
doesn’t support dynamic arrays. So these parameters were communicated in the following
way:

case RaymarchRenderer .Shape. Pyramid :
dim = new vector12 (PyramidDimensions .size ,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
return dim;

case RaymarchRenderer .Shape. Triangle :
dim = new vector12 (TriangleDimensions .sideA.x,

TriangleDimensions .sideA .y,
TriangleDimensions .sideA .z,
TriangleDimensions .sideB .x,
TriangleDimensions .sideB .y,
TriangleDimensions .sideB .z,
TriangleDimensions .sideC .x,
TriangleDimensions .sideC .y,
TriangleDimensions .sideC .z,
0, 0, 0);

return dim;

Computer buffers were also used to communicate other information like the number of
shapes to be rendered and their properties.
All the shapes are rendered on render texture in front of the camera, the dimensions of
which are communicated to the shader.
The tool is built on top of this Raymarching Engine and is deployed as an executable
(.exe) file.
This system is designed to leverage the processing power of the GPU through direct
computation and is optimized to achieve a constant time complexity.
To prevent performance degradation when generating large datasets, the system employs
a technique known as batch processing, which involves generating images in small groups
(or batches), clearing the GPU memory, and repeating the process until all images
are generated. This approach ensures that the performance of the system remains
consistent, even when processing large datasets, thereby enabling efficient and effective
image generation at scale.

for (int i = 0; i < dataset_size ; i += batch_size)
{

...
for (int j = 0; j < shape_count ; j++)
{

...
Destroy (go);

}
...
RenderTexture . ReleaseTemporary (rt);
file_names .Clear ();

}
csvWriter . Close ();

:12 REFERENCES

...
}

The tool and its source code will be made publicly available on the popular code hosting
platform Github following the completion of Pacific Graphics 2023, a leading conference in
the field of computer graphics and visualization. Meanwhile, it can be accessed from the fol-
lowing link: https://drive.google.com/file/d/1OkwSgqqx2isK-lQN5Vudq4vGYJCSJ-ND/
view?usp=sharing

6 Conclusion and acknowledgements

In conclusion, the work presented in this article has introduced a comprehensive dataset of
3D shapes generated using SDFNet, a proprietary rendering tool. This dataset was created
by manipulating primitive shapes using Boolean operations such as union, intersection, and
subtraction, and is intended to be used for Constructive Solid Geometry algorithms and
Disentangled Representation Learning. The availability of such a dataset has the potential
to disrupt the current leading VAE-based disentanglement frameworks and facilitate the
development of models that can generate low-poly 3D shapes, benefiting applications such as
video game development and architectural design.

The proposed dataset and tool have been demonstrated to be effective in training
FactorVAE to learn disentangled representations of the shapes in the dataset. The results of
this study show that the dataset can be used to extract 3D information from 2D images by
traversing the latent space of FactorVAE. This is a significant advancement in the field of
disentangled representation learning, where the complexity of generative factors can hinder
the ability of VAEs to disentangle the learned latent factors. The availability of a large and
diverse 3D shape dataset, such as the one presented in this article, can provide the necessary
complexity for training VAEs to extract 3D information from 2D images.

The dataset presented in this work overcomes the limitations of the existing datasets,
which do not cover multiple shapes per image and are limited to only a few primitive shapes.
The proposed dataset includes various primitive shapes, their dimensions, orientations,
and color information, making it useful for training VAEs to extract 3D information from
2D images. Furthermore, the tool for generating personalized datasets can be used to
create datasets for specific applications, making it a valuable resource for researchers and
practitioners.

The availability of a large-scale dataset of low-poly 3D shapes will not only benefit the
field of disentangled representation learning but also facilitate the development of applications
that rely on 3D modeling, such as video game development, architectural design, and virtual
reality applications. The proposed dataset and tool represent a significant step forward
in this direction, providing researchers and practitioners with the necessary resources to
advance the state of the art in these fields.

References

Leonidas Guibas Angel X. Chang, Thomas Funkhouser. Shapenet: An information-rich 3d
model repository. URL https://arxiv.org/abs/1512.03012.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. FAUST: Dataset and
evaluation for 3D mesh registration. In Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), Piscataway, NJ, USA, June 2014. IEEE.

https://drive.google.com/file/d/1OkwSgqqx2isK-lQN5Vudq4vGYJCSJ-ND/view?usp=sharing
https://drive.google.com/file/d/1OkwSgqqx2isK-lQN5Vudq4vGYJCSJ-ND/view?usp=sharing
https://arxiv.org/abs/1512.03012

REFERENCES :13

Chris Burgess and Hyunjik Kim. 3d shapes dataset, 2018. URL https://github.com/
deepmind/3d-shapes/.

Yong He, Kayvon Fatahalian, and Tim Foley. Slang: Language mechanisms for extensible
real-time shading systems. ACM Trans. Graph., 37(4), jul 2018. ISSN 0730-0301. doi:
10.1145/3197517.3201380. URL https://doi.org/10.1145/3197517.3201380.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising, 2018.
Xin Wang, Hong Chen, Siao Tang, Zihao Wu, and Wenwu Zhu. Disentangled representation

learning. ArXiv, abs/2211.11695, 2022.
A. Khosla F. Yu L. Zhang X. Tang Z. Wu, S. Song and J. Xiao. 3d shapenets: A deep

representation for volumetric shapes.

https://github.com/deepmind/3d-shapes/
https://github.com/deepmind/3d-shapes/
https://doi.org/10.1145/3197517.3201380

	Implementing the State of the Art
	Neural Radiance Fields (NERFs) through raymarching
	Drawbacks of NERFs

	Signed Distance Functions and Surface Rendering
	Rendering Shapes
	Building a custom-editor in Unity

	Predicting Shapes – designing the Pipeline.
	Architecture and Parameters of Neural Network.
	Creating our dataset in Blender
	In more detail: Parameters in use.
	Justification: Why Unity?
	Compute Buffer Conversion – C# to HLSL

	Putting it all together with raymarching.
	Scope for improvement.
	Conclusion and acknowledgements
	791e1221-d899-4297-9fb3-bda893ad776b.pdf
	Introduction
	Motivation
	Constructive Solid Geometry
	Disentangled Representation Learning

	Dataset Description
	Composition
	Preparation
	Processing And Labeling

	Experimentation
	Brief outlook into Representation Learning and Disentanglement
	Representation Learning
	Disentanglement
	FactorVAE for disentanglement

	Iterations of Experiments to improve the dataset
	Representation Learning and 3D feature extraction

	Tool Release and Distribution
	Conclusion and acknowledgements

